
High-speed implementation of an ECC-based wireless
authentication protocol on an ARM microprocessor

M.Aydos, T.Yanik and C.K.KOG

Abstract: The results of the implementation of elliptic curve cryptography (ECC) over the field G@)
on an 80MHz, 32-bit ARM microprocessor are presented. A practical software library has been
produced which supports variable length implementation of the elliptic curve digital signature
algorithm (ECDSA). The ECDSA and a recently proposed ECC-based wireless authentication
protocol are implemented using the library. Timing results show that the 160-bit ECDSA signature
generation and verification operations take around 46ms and 94ms, respectively. With these timings,
the execution of the ECC-based wireless authentication protocol takes around 140ms on the
ARM7TDMI processor, which is a widely used, low-power core processor for wireless applications.

,./

1 Introduction

The rapid progress in wireless communication systems,
personal communication systems, and smartcard technolo-
gies has brought new opportunities and challenges to be
met by engineers and researchers worlung on the security
aspects of the new communication technologies. Public-key
cryptography offers robust solutions to many of the exist-
ing problems in communication systems, although excessive
computational demands (on-line memory, code size and
speed) have made the use of public-key cryptography
limited, particularly on wireless communication systems.
The implementation of public-key cryptography on server
and client platfomis rarely leads to problems, due to the
availability of high-speed processors and extensive memory
space. However, in restricted hardware environments with
limited computational power and small memory, e.g.
smartcards and cellular phones, we meet more challenges.
The integration of the public-key cryptographic techniques
is often delayed or completely ruled out due to the difi-
culty of obtaining efficient, reliable solutions. It is obvious
that we need:

Public-key cryptographic systems with higher strength
per key bit.

Efficient, platform-specific, and optimised implementa-
tions for a given restricted environment.
The benefits of the ‘higher strength per key bit’ include
higher speeds, lower power consumption, smaller band-
width requirements and smaller certificate sizes. These
advantages are particularly beneficial in applications where
the bandwidth, computational strength, power availability,
or storage are hghly constrained.

Elliptic curve cryptography [l-31 offers secure and effi-
cient solutions for the new communication technologies. It

0 IEE, 2001
IEE Proceedings online no. 2001051 I
DOL 10.1049/ipm:20010511
Paper fmt received 5th May 2000 and in revised form 10th May 2001
The authorj are with the Electrical and Computer Engineering Department,
Oregon State University, Owen Hall 220, Cowallis, Oregon 97331, USA

requires fewer bits than the RSA for a s d a r amount of
security. For example, 1024-bit RSA seems to be equivalent
to 139-bit ECC, since it requires approximately the same
amount of computational power to break [4]. While the
ECC provides shorter key sizes, the time and code size
requirements may still be excessive. Thus, efficient and opti-
mised implementations are required for the restricted plat-
forms found in wireless communication.

Certicom’s SigGen smartcard [5] is a good example of an
ECC software implementation on a restricted platform. It
is a prototype smartcard with an 8-bit microprocessor that
generates digital signatures using a conventional core from
Motorola (68SC28). Developed in cooperation with
Schlumberger, Siggen combines the Multifiex card technol-
ogy with the Certicom Elliptic Curve Engine based on the
field GF(29, and provides fast public-key operations. This
card demonstrates that effective digital signature applica-
tions can be implemented on standard processors. The
digital signatures are generated in less than 600ms while
using only 90 bytes of RAM. It has been implemented in
less than 4K code. SigGen is ideally suited for applications
requiring end-user identification and strong authentication.

Another interesting implementation of the ECC over the
field G@) on a 16-bit micro-computer was introduced in
[6]. A practical cryptographic library has been designed,
which supports the elliptic curve arithmetic operations, the
digital signature generation and verification, and the secure
hash algorithm SHA-1. Their target processor was
Mitsubishi’s 10 MHz, 16-bit microcomputer M16C, whch
has been used in various applications in mobile telecommu-
nication systems, e.g. cellular phones, pagers, etc. They
designed two independent integer arithmetic modules: one
for executing the modular arithmetic operations with
respect to a fixed prime p , and the other for general integer
routines which accept any positive integers with arbitrary
length for wider applicability. Their goal here was to
support not only the ECC but also the RSA. They have
reported a speed of 150ms for generating a 160-bit ECDSA
signature, and 630ms for verifying the signature. The total
code size was 4 kbyte, including the SHA-1. There are
much faster implementations of the ECC [7], although
these implementations are obtained on high-end microproc-
essors.

IEE ProcCommun., Vol. 148, No. 5, October 2001 273

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

Our goal is to design a high-speed and scalable cqpto-
graphic library suitable for implementation on low-power
microprocessors and digital signal processors. The library
supports the ECDSA signature generation and verification
and also contains SHA and DES algorithms, which are
necessary for the implementation of the wireless authentica-
tion protocols. In this paper, we report the implementation
results of the wireless authentication protocol described in
[SI. We implemented the protocol on the SOMHz, 32-bit
ARM7TDMI microprocessor using the ARM software
development toolkit. The ARM7TDMI is a commonly
used low-power processor for wireless communication plat-
forms; for example, see [9, 101 and the web locations:
http://www.dspg.com/prodtech/core/article/18.htm
http://www.lucent.co"icro/NEWSPRESS 1999/
022399c.html
http://www.mobilinktel.com/Press/
http://www.oki.co.jp/OKI/DBG/englishrm7tdmi. htm
http://www.sirius. be/satcomintegr. htm

In our implementation, we obtained the timings of
46.4ms ECDSA signature generation and 92.4ms ECDSA
signature verification for the 160-bit ECC over the field
GF(p). We also obtained the total protocol execution tim-
ings, memory and bandwith requirements, whch are given
in ths paper.

2 Elliptic curve operations

The speed of the elliptic curve operations, e.g. the point
addition and point multiplication, depends on the arithme-
tic of the underlying finite field. The drafted IEEE standard
[l 11 proposes the use of the fields GF(p) and GF(2k). The
use of the field GF(p) requires that we implement modular
arithmetic with respect to the prime modulus p . Due to the
security requirements, the size of p is at least 100 bits, and
usually around 160 bits. The large number arithmetic has
been extensively studied in the context of the RSA algo-
rithm, and eficient algorithms for field multiplication have
been designed [15]. An efficient method for performing the
field multiplication is the Montgomery method [13, 141,
which effectively performs modulo 2k multiplication instead
of modulo p multiplication, where 2k > p > 2k-I.

In the following we summarise several different coordi-
nate systems used to represent elliptic curve points. Th~s is
important because for each system the total number of field
multiplications is different, resulting in different speed
values for elliptic curve point additions and doublings. The
number of expensive field operations (multiplication, squar-
ing and inversion) required by the elliptic curve point addi-
tion and doubling operations is summarised in Table 1 for
each coordinate system.

Table 1: Field operations required in each coordinate system
~~

Affine

~

Modified
Jacobian

Projective

EC addition 1 Inv + 3 Mu1 16 Mu1 13 Mu1 + 6 Squ

EC doubling 1 Inv + 4 Mu1 10 Mu1 4 Mu1 + 4 Squ

2.1 Arithmetic using affine coordinates
An elliptic curve over the finite field GF(p) is defined as the
set of points (x, y), satisfying the elliptic curve equation

y 2 = 5 3 + a z + b
where x, y , a and b are the elements of the field. Note that

214

the condition 4a3 + 27b2 f 0 should be met. The addition
formulae in the affine coordinates are given below. Let P =
(XI, VI), Q = (x2, yz), and K = P + Q = (x3, y3) be points on
the elliptic curve E over the finite field GF(p). The formulae
for obtaining K are given below.

Addition formulae when P f kQ

UI = Y I -y2, U2 = x, - x2, U3 = U, U2-I then
x3 = U? - x1 - x2 and y3 = U3(x, - x3) - x,.

Doubling formulae when P = Q
U1 = 3xI2 + a, U, = 2yl, U, = UlU2-' then
x3 = U? - 2x1 and y3 = U3(~1 - x3) - yl.

2.2 Arithmetic using projective coordinates ~

The inversion operation within the field GF(p) is a time
consuming operation. The projective coordinates are used
to reduce the number of modular inversions [6]. Given the
affine coordinates x and y, the projective coordinates X, Y
and Z are obtained as

x = x , Y = y , z = 1
Actually, there is more than one type of projective coordi-
nates, although the one mentioned here provides the fastest
arithmetic [ll]. The equations given above are used for
converting a point from the affine coordinates to the
projective coordinates. The formulae for converting it back
to the affine coordinates are given as

x = ZX-' and y = Y Z - ~
The addition formulae in the projective coordinates are

' given in [6, 111. Let P = (XI, Y,, Z,), Q = (X,, Y,, Z,), and
K = P + Q = (X3, Y3, Z3) be points on the elliptic curve E
over the field GF(p). The formulae for obtaining K are
given below.

Addition formulae when P # +Q
U, = x,z;, s, = YIZ2, U, = x2z12, s, = Y2Z,3, w = U,
- U,, R = SI - S2, T = U, + U,, M = SI + S2, Z3 =
Z, Z, W then
X3 = R2 - TW2 and Y3 = 2-'(VR - M W3), where V = TW2

Doubling formulae when P = Q
M = 3XI2 + aZ14, 2, = 2Y1ZI, S = 4 4 Ylz then
X3 = M2 - 2 s and Y3 = M(S ~ X3) - T, where T = 8 Y,'.

2.3 Arithmetic using modified Jacobian
coordinates
The Jacobian coordinates of the affine coordinates (x, y)
are defined as (X, Y, z>, such that x = XZ-, and y = YZ-3.
The new elliptic curve equation then takes the form

- 2x3.

~2 = x3 + a ~ ~ 4 + a 6

over the field GF(p). When the Jacobian coordinates are
represented as a quadruple (X , Y, Z , aZ4), we obtain the
modified Jacobian coordinates which seem to provide the
fastest possible doubling formulae. The addition formulae
for the Jacobian and the modified Jacobian coordinates are
given in [15]. Here, we only give the equations for the latter
one, since it is the one that we decided to use in our soft-
ware implementation. Let P = (XI, Yl , Z l , aZ14), Q = (X2,
Y2! Z2, ~ 2 2 4) . and K = P + Q = (X3, Y3, Z3, aZ34) be
points on elliptic curve E over the field G O) . The formu-
lae for obtaining K are given below.

Addition formulae when P # +Q

Y2ZI3, H = U, -U2, Y = SI - S, then
U, = X1Z*, s, = YlZ?, U, = X2Z12, s, = Y2Z,3, s, =

IEE Proc -Commun Vol 148, No 5. Ocrober 2001

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

http://www.dspg.com/prodtech/core/article/18.htm
http://www.lucent.co"icro/NEWSPRESS
http://www.mobilinktel.com/Press
http://www.oki.co.jp/OKI/DBG/englishrm7tdmi
http://www.sirius

X3 = -H3 - 2U1 H2 + y2, Y3 = -SI H3 + r(U, H2 ~ X,), Z3 =
Z,Z,H and Z34 = aZ14.

Doubling formulae when P = Q
S = 4Xl YI2, U = 8 Y14, M = 3x1~ + (uZI4), T = -2s + M2
then X , = T, Y, = M(S ~ 7) - U, Z3 = 2YlZl and aZ: =
2 U(aZ,4).

3

The operations in the elliptic curve analogue of the digital
signature algorithm utilise the arithmetic of points which
are elements of the set of solutions of an elliptic curve
equation defined over a finite field. The security of the pro-
tocol depends on the intractability of the elliptic curve ana-
logue of the discrete logarithm problem. First, an elliptic
curve E defined over GFk) with large group of order n and
a point P of large order is selected and made public to all
users. Then, the following key generation primitive is used
by each party to generate the individual public and private
key pairs. Furthermore, for each transaction the signature
and verification primitives are used. We briefly outline the
elliptic curve digital signature algorithm (ECDSA) below,
details of which can be found in [l 11.
ECDSA key generation: The user A follows these steps:
Step 1. Select a random integer d E [2, n - 21.
Step 2. Compute Q = d x P.
Step 3. The public and private keys of the user A are (E,

P, n, Q) and d, respectively.
ECDSA signature generation: The user A signs the message
m using the following steps.

Elliptic curve digital signature algorithm

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Select a random integer k E [2,n - 21.
Compute k x P = (xl, yl) and Y = x1 mod n.
If xI E GF(2k), it is assumed that x1 is represented
as a binary number.
If r = 0 then go to step 1.
Compute k-I mod n.
Compute s = k-’(H(m) + d . r) mod n.
Here H i s the secure hash algorithm SHA.
I f s = 0 go to Step 1.
The signature for the message m is the pair of inte-
gers (Y, s).

ECDSA signature verification: The user B verifies A’s
signature (Y, s) on the message m by applying the following
steps:
Step 1. Compute c = s-l mod n and H(m).
Step 2. Compute U, = H(nz) c mod n and n2 = Y . c mod

n.
Step 3. Compute U , x P + u2 x Q = (xo, yo) and v = xo

mod n.
Step 4. Accept the signature if v = r.

4 ECC-based wireless authentication protocol

The authentication protocol given in [8] was originally
intended for mobile phones. However, it is also suitable for
handheld devices and smartcards. Ths makes the protocol
a very strong security algorithm candidate to be deployed
in the next generation cellular phones and smartcards. The
160-bit key length is considered secure enough for now and
the immediate future. However, the algorithms were imple-
mented in such a way that the key length can easily be
increased to any integer multiple of 16 between 176 and
256. Ths scalability makes our implementation unique. We

IEE Proc-Coinmun., Vol. 148. No. 5. October 2001

briefly describe the protocol details of which are found in
[8]. The protocol goals can be stated as follows:

mutual authentication of the server and the user;
establishing a secret authentication key to protect the

data used in mutual authentication;
non-repudiation of origin by the user and the server for

relevant data sent from the user to the server and vice versa;
agreement on a secret session key, which will be used to

encrypt voice or data communication.
Additional features can easily be added to the protocol.

These include user identity confidentiality that is hiding the
identity of the portable device from an eavesdropper on the
communication channel, and interoperability that is allow-
ing the negotiation of the symmetric key algorithm between
the communicating parties. The first feature can be
provided by sending a new encrypted temporary ID from
the server to the user after the authentication process. The
latter can be supported in the protocol by changing the
exchanged message format and implementing several well-
known encryption algorithms at both server and user
terminals.

4. I
In order to receive a certificate, the terminal sends its public
key Qs together with its user identity, through a secure and
authenticated channel to the CA. The CA uses its private
key to sign the hashed value of the concatenation of the
public key, the temporary identity I,, and the certification
expiration date ts. The CA then sends .the signed message
through the secure and authenticated channel to the termi-
nal as shown in Fig. 1.

By repeating the very same process the user acquires its
certificate as shown in Fig. 2. The certlficate consists of a
pair of integers which is denoted as (rs, ss) for the server
and (ru, s,) for the user. Here vu and r, are the x-coordinates
of the (distinct) elliptic curve points R, and R,, respectively.
As mentioned earlier, the proposed protocol is based on
the ECDSA.

Terminal and server initialisations

4.2 Mutual authentication between terminal
and server
The protocols shown in Figs. 1 and 2 are executed off-line.
The mutual authentication and key agreement protocols
between the terminal (user) and the server need to be
executed in real-time. We give the combined protocol in
Fig. 3. The protocol steps and its resistance to several
attacks have been elaborated in [8]. The number of
exchanged messages of this protocol over the air is equal to
four. It is important to minimise this number, since
combined with the propagation delay it increases the call
setup time. The transmission time will be the dominant
factor for low-bit transmission channels. On the other
hand, the bottleneck will be the encryption and decryption
operations for high-rate transmission channels.

The protocol consists of exchanging public keys, generat-
ing random challenge numbers, exchanging encrypted
certificates and the other necessary data using the special
key, and then verifying the certificates in order to complete
the mutual authentication process. The computational cost
until t h s point on the user side is just a point multiplication
on the curve (eP operation), generating a random number,
a secret key encryption and a secret key decryption (DES,
3DES, RC5, or IDEA), and finally an ECC signature veri-
fication operation. The timing figures of these operations
will increase as we increase the ECC key length from 160
bits. The scalability protects the long term investments: as

275

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

Certification authoritv Server
Choose d, E [2, n - 21

e Qs = d, x P

e Send

e Choose k, E [2,n - 21
Rs = k , x P

e Receive
Choose unique I,

e r, = R,.x
SS = k;'(H(Q,.x,I,,t,) +d, . r s)

Send

User Certification authority
e Choose d, E [2, n - 21 e Choose I C , E [2,n - 21

Qu = du x P o I I , = k , x P

Send --3 Qu e Receive
e Choose unique Iu
ru = &.x

Receive

User

Receive
Generate a random number gu

Send

Qk.5: the mutuallly agreed key
Qk =d, X Qs = (A*&) X P

0 c = a,-1
O U ~ = C . ~ ,

e u 2 = c . r s
* R = ~ ~ x P + u : ! x Q ~ ~

v = R.x
e If v # r,, then abort

km = h(Qk.5, gs, gu)msb-64
e &: the unique secret key _ _

Fig. 3 Mutual authenticatwn &key agreement

Server
.+-- e Send Qs

the key length is increased, the hardware or the software
need not be modified.

The last part of the protocol establishes a session key
between the user and the server. The one-time unique key is
obtained by hashing several previously obtained data
blocks. This key will be used to encrypt the data sent
through the channel.

There are several advantages of the protocol. While
roaming, a visited network cannot know the session key

216

'2 Receive
0 Q k = d, X Qu = (d s * &) X P

Qk.x: the mutuallly agreed key
Generate a random number gs
CO = E(Qk.x, (e,, (rs, ~s), t s , gu,gs>)

CO .E- Send

- c'1 Receive

D (Q k . X , ci)
If gs and tu are valid, then

o c = s ,
e u1 = c - e u
e u 2 = c . r u

R = u ~ x P + u ~ x Q ,
e v = R.x

If v # ru, then abort
km = h(Qk.X,gs, gu)msb-64
k,: the unique secret key

-1

until a visiting user makes a request. In addition, the proto-
col is secure unless the attacker can compromise either the
user or the server, and at the same time break the public
key algorithm. Furthermore, unlike many other protocols,
certificates in this protocol are kept secret at all times to
prevent spoofing attacks. Finally, the unique session key is
generated by performing a one-way function on the previ-
ously obtained data. Both parties contribute the same
amount in generating this key.

IEE Proc -Commun , Vol 148, No 5, October 2001

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

5

The parameter lengths (for 160-256 bits implementation)
and the bandwidth and storage requirements of the proto-
col are summarised in Table 2. We then compare this
protocol to the Beller-Chang-Yacobi protocol [161 and
Aziz-Diffie protocol [17].

Comparisons with other existing protocols

Table 2: Parameter lengths, bandwith and storage require-
ments in bits

160-bit
ECC

Q U S 161

%,S 160

(ru,s, sUJ 320

tu,sr su.s 64
Bandwidth 1730

Storage 1408

176-bit
ECC

177

160

352

64

1826

1520

192-bit 208-bit
ECC ECC

193 209

160 160

384 416

64 64

1922 . 2018

1632 1744

256-bit
ECC

257

160

512

64

2306

2080

The protocol requires less bandwidth. The total number
of bits exchanged in the real-time portion of the protocols
is given as follows:
Beller-Chang-Yacobi: 8320 bits (1024-bit key)
Aziz-Diffie: 8680 bits (1024-bit key)
This protocol:

The protocol has low storage requirements for the user
side, which makes it suitable for smartcards and other
handheld computing devices. Here we refer to the space
required to store public and private keys, the certificates, or
any extra data required throughout the protocol:
Beller-Chang-Yacobi: 51 20 bits (1024-bit key)
hz-Diffie: 2176 bits (1024-bit key)
This protocol: 1408 bits (160-bit key)

The protocol has modest computational load on the user
side for real-time execution:
Beller-Chang-Yacobi: 2 PKE (1024-bit) + 1 PKD (1024-

bit) + Precomputation
Aziz-Diffie: 3 PKE (1024-bit) + 2 PKD (1024-

bit)
This protocol: 1 eP (160-bit) + 1 ECDSAV (160-

bit) + 2 SKE (672-bit data) + 1
SHA (288-bit data)

The meanings of the'above symbols are as follows: PKE:
public key encryption, PKD: public key decryption, eP :
point multiplication, ECDSAV: elliptic curve digital signa-
ture algorithm verification, SKE: secret key encryption or
decryption

6
toolkit

1730 bits (160-bit key)

32-bit ARM microprocessor and development

ARM Incorporated offers several microprocessor cores,
and the 32-bit RISC processor, ARM7TDM1, is one of
them. It is of interest to us because the processor is opti-
mised for the best combination of die size, performance
and power consumption. The processor uses a three-stage
pipeline: fetch, decode and execute [18]. A pure RISC proc-
essor executes each instruction in a single cycle. However,
none of the nonsuperscalar commercial RISC processors
actually achieves this goal. The ARM7 processor takes one
cycle to perform most data processing operations, which
account for 50% of all instructions in a typical code. Single
data loads take three cycles, and stores require two cycles.

IEE Proc.-Conimun., Vol. 148. No. 5. October 2001

Load and store multiples can take up to 18 cycles. Overall,
the ARM7 achieves an average CPI (clock cycles per
instruction) of around 1.8 [19]. The ARM7 processor has
31 32-bit registers. At any time, 16 are visible. The other
registers are used to speed up exception processing. All
register specifiers in ARM instructions can address any of
the 16 registers.

The ARM7TDMI is a very simple RISC processor. The
core is fully 32-bit, including a 32-bit ALU, a barrel shifter,
data and address buses. Although the 4 Gb of address
range is rarely used in wireless applications, it does have the
advantage of simplifying the decode logic by using the
upper address lines as chip select signals [20]. Certain fea-
tures of the processor are summarised as follows.

Shortest instruction execution time:

Registers:
800ns (atf= 80MHz)

30 general purpose registers
6 status registers
program counter
Instruction sets: 48 instructions
load and store instructions
data processing instructions
multiply instructions
coprocessor instructions
branch instructions

Portable and handheld products require processors that
consume less power than those in desktop and other pow-
ered applications. RISC processors such as ARM7TDMI
have some extra strengths as far as the power is concerned.
A modern 32-bit RISC architecture can provide software
compatibility between a range of products. Ths kind of
modem microcontroller family is also very easy to imple-
ment. These microprocessors are available as small cores
which are easy to integrate. Another advantage is on-chip
debug support. These advantages make this family a good
fit for embedded applications.

Another advantage of the ARM7TDMI is the fact that it
has two instruction sets: The ARM7TDMI implements
both the traditional 32-bit wide ARM instruction set and
the new Thumb instruction set, which is only 16 bits wide.
The Thumb instruction set was added to remove the limita-
tions of code density and performance from narrow mem-
ory. Effectively, the traditional 32-bit ARM instruction set
was compressed into the Thumb 16-bit instruction set. The
Thumb instructions are then decompressed at execution
time to produce a traditional 32-bit wide ARM instruction,
which is then executed on the core as normal. As the ARM
decoding is relatively simple, it is possible to do the Thumb
decompression on the fly without taking any additional
cycles. The special use of ARM thumb instructions enables
ARM to evaluate the real GSM, DECT and D-AMPS
code from the leading wireless players. There are three
main issues for benchmarking the code [IO]:

Code density: This shows how much memory is required
for a given high level C code. The smaller size will result in
reduced cost.

Performance: The processor's clock speed is an impor-
tant factor. The smaller the clock rate to execute given
algorithms, the less the power consumed. This will also lead
to simpler designs. The 32-bit RISC controllers will spend
most of its time in an idle mode resulting in saving power.

Power consumption: This is one of the most important
factors in wireless technology. The lower power consump-

277

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

tion will make the batteries last longer, the size smaller and
the price cheaper. The ARM7TDMI consumes ody
1.85mW per MHz, while the StrongARM runs up to
233MHz but only consumes 900mW [lo].

ARM7TDMI is widely accepted and used in the cellular
phone and smart phone technology due to its cost and
power efficiencies. The future prospects show that
ARM9TDMI will probably replace ARM7TDMI. Inte-
grating the DSP module with the ARM7 f a d y will
produce the new ARM9 family [9].

7 Software architecture

A practical cryptographic library implementation of the
ECC over G F b) was designed to perform the ECDSA sig-
nature generation and signature verification, which is being
standardised in the ANSI X9F1 and IEEE P1363 stand-
ards committees. The IEEE-P1363 describes the algorithms
in detail for elliptic point addition, doubling, multiplication,
etc.

In the creation of our library, we did not make any
assumption as to the elliptic curve parameters to be used.
Elliptic curves can be generated randomly. Note that some
ECDSA implementations fur the constant term a of the
curve equation to p - 3 to speed up the elliptic doubling. In
our case, the curve parameters and the base point (P,y, P,)
are generated randomly. Our library allows users to choose
different curves with different key lengths, and therefore
our library is scalable. The machine word size is 32-bit on
the ARM microprocessor. The library is implemented in
27kb of code size. The modified Jacobian coordinates are
used to represent the points on the curves since this gives
the fastest point doubling timings.

The important features of the software library can be
listed as follows:

It supports digital signature generation, signature verifi-
cation and key generation.

It supports a superset of all standard ECC fields, basis
representations, curves and key lengths, enabling compati-
bility with current standards and future advances.

It supports long key lengths providing security for high-
value or very long-term applications.

It provides two optional levels of curve-based precompu-
tation that speed up repeated operations on the same curve.
Level 1 uses a small amount of additional memory and
provides moderate speedup and level 2 uses a large amount
of memory and provides much more speedup.
Short definitions of the modules are given as follows.
Modulo p integer library: This module contains modular
operations such as modular addition, subtraction, multipli-
cation and inversion operations modulo p . In the ECDSA
signature generation operation, these routines consume the
largest amount of time. In particular, the modular multipli-
cation operation dominates the timing performance of an
EC signature. To improve the performance, we use an
improved version of the Montgomery multiplication algo-
rithm.
General integer library: This library contains general opera-
tion routines. These routines accept variable length inputs.
EC point arithmetic library: This library consists of point
addition, point doubling and point multiplication routines.
The point addition and doubling routines are performed
using the modified Jacobian coordinate system.
ECDSA key and signature generatiodverification: Ths is
the root module of our software architecture. The elliptic

218

curve parameters and key generation are performed here.
Upon creating these parameters, this top module can inter-
act with other modules to generate signatures or to verify
signatures. Note that our library does not contain a digest
algorithm such as SHA-1 or MD5. We use randomly gen-
erated 160-bit message values, which is assumed to be the
output of a hash function algorithm, to test the modules.

8 Implementation results

In this Section, we present our implementation results. The
elliptic curve signature generation and verification timings
are listed for variable key lengths to give an idea of how
fast these operations could be done in today's technology.
Table 3 shows the timings of the operations for variable
ECC key lengths.

Table 3: Performance timings

DES

SHA

Point Mu1

Sign Gen

Sign Ver

Protocol

160-bit 176-bit 192-bit 208-bit 256-bit
ECC, ms ECC, ms ECC, ms ECC, ms ECC, ms

0.25 0.25 0.25 0.25 0.25

2 2 2 2 2

44.8 63.4 69.2 93.6 150.2

46.4 65.4 71.3 96.2 153.5

92.4 131.3 148.3 194.3 313.4

139.7 197.2 220 290.4 466.1

Note that our library does not have a random number
generator (RNG). Generating a random number is very
fast and therefore its timing value is negligible compared to
the other operations such as point multiplication and signa-
ture generation. Similarly, SHA operations can be executed
very fast. According to the implementation in [6], the
SHA-1 requires approximately 2 ms to digest one block
(512 bits) of data. It is a hardware implementation on a 16-
bit Mitsubishi microprocessor (M16C). In our protocol the
input size to the SHA-1 is given as k + 128, where k is the
implemented elliptic curve key length. The largest k value
shown in the table is 256 bits for which the input size for
SHA-1 is 384-bits. Therefore, for each key length given in
the Table 3, the SHA-I input length in our protocol should
be padded to reach 512-bit block size. We assume that in
the worst case scenario we will obtain 2ms timing value for
processing a block of data using SHA- 1.

The protocol's timings on signature generation and veri-
fication is better than that of [6]. Hasegawa, Nakajima and
Matsui reported signature generation and verification
timings as 150ms and 630ms on a 16-bit microcomputer,
respectively, in our implementation, the signature genera-
tion and verification timings are 46ms and 92ms on a 32-
bit ARM microprocessor.

9 Possible enhancements

Possible enhancements for further speeding up and/or
reducing code size are: (i) the scalar multiplication of the
base point can be performed in a more efficient way by
having a precomputed look-up table in the ROM area; (ii)
the fmite field multiplication operations dominate the per-
formance of signature generation and verification. Even a
small improvements on the existing multiplication routine
improves the overall ECDSA performance; and (iii) the 16-
bit wide Thumb instruction set of ARM7TDMI can be
used to reduce the code size.

IEE Proc-Commun.. Vol. 148, No. 5. October 2001

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

10 Conclusions

In this paper, we presented a practical implementation of
the ECC over the field GF(p). The field and elliptic curve
operation algorithms in the library were written in such a
way that the implemented design will permit the use of
increased key lengths. Recently, it was claimed [4] that
1024-bit RSA and 139-bit ECC offer computationally
equivalent security. This is better than the generally
believed security comparison, in which 1024-bit RSA and
160-bit ECC offer similar security.

In our implementation we created an ECC library that is
capable of performing the ECDSA signature generation
and verification operations. More importantly, the imple-
mentation permits users to select different elliptic curves
with longer key sizes. This scalable architecture of the
design enables the ECC to be used in restricted platforms
as well as high-end servers. With this implementation, we
obtained timing results of 46ms and 92ms for the ECC-160
signature generation and verification on a 32-bit ARM
processor, respectively. In addition, the timing results were
obtained for a recently proposed wireless authentication
and key agreement protocol [8]. This protocol can be used
in third generation wireless communication as a security
protocol due to its bandwidth and storage eficiency and
fast execution timing performance. The protocol execution
timing is 140ms on a ARM7TDMI processor.

11 Acknowledgments

Ths research was supported by rTrust Technologies.

12 References

1 MENEZES, A.J.: ‘Elliptic curve public key cryptosystems’ (Kluwer
Academic Publishers, Boston, MA, 1993)

2 KOBLITZ, N.: ‘A course in number theory and cryptography’
(Springer, Berlin, Germany, 1994, 2nd edn.)

3 BLAKE, I., SEROUSSI, G., and SMART, N.: ‘Elliptic curves in
cryptography’ (Cambridge University Press, New York, 1999)

4 LENSTRA, A.K., and VERHEUL, E.R.: ‘Selecting cryptographic
key sizes’. Proceedings of 3rd Workshop on ENiptic curve cryptography
(ECC 99), Waterloo, Canada, 1999, pp. 1-3

5 CERTICOM.: SigGen Smart Card. 1997, http://205.150.149.57/ceU
embed.htm

6 HASEGAWA, T., NAKAJIMA, J., and MATSUI, M.: ‘A practical
implementation of elliptic curve cryptosystems over Gm) on a 16-bit
microcomputer’ in IMAI, H., and ZHENG, Y. (Eds): ‘First interna-
tional workshop on Practice and theory in public key cryptography,
Lecture Notes in Computer Science, No.1431’ (Springer, Berlin, Ger-
many, 1998), pp. 182-194

7 ITOH, K., TAKENAKA, M., TORII, N., TEMMA, S., and KURI-
HARA, Y.: ‘Fast implementation of public-key cryptography on a
dsp tms32Oc6201’ in KOC, C.K, and PAAR, C. (Eds): ‘Cryptographic
hardware and embedded systems, Lecture Notes in Computer Science,
No. 1717’ (Springer, Berlin, Germany, 1999), pp. 61-72
AYDOS, M., SUNAR, B., and KOC, C.K.: ‘An elliptic curve cryp-
tography based authentication and key agreement protocol for wire-
less communication’. Proceedings of 2nd International workshop on
Discrete algorithm and methock for mobile computing and Communi-
cations symposium on Information theory, Dallas, Texas, 1998

9 GUNASEKARA, 0.: ‘Smart phone challenges’. 1997, http://
www.arm.com/DocumentationMhitePapers/SmartPhone

10 GUNASEKARA, 0.: ‘Developing a digital cellular phone using a 32-
bit microcontroller’. 1998, http://w.ami.com/Documentation/
WhitePapersiCellPhone

1 1 IEEE.: ‘PI 363: Standard specifications for public-key cryptography’.
Draft Version 13, 1999

12 KOC, C.K.: ‘High-speed RSA implementation’. Technical Report TR
201, 1994, RSA Laboratories

13 MONTGOMERY, P.L.: ‘Modular multiplication without trial divi-
sion’, Muth. Comput., 1985,44, (170), pp. 519-521

14 KOC, C.K., ACAR, T., and KALISKI, B.S.: ‘Analyzing and com-
paring Montgomery multiplication algorithms’, IEEE Micro, 1996, 16,
(3) , pp. 2 6 3 3

15 COHEN, H., MIYAJI, A., and ONO, T.: ‘Efficient elliptic curve
exponentiation using mixed coordinates’ in OHTA, K., and PEI, D.
(Eds): ‘Advances in cryptology - ASIACRYPT 98, Lecture Notes in
Computer Science, No.1514‘ (Springer, Berlin, Germany, 1998) pp.
51-65

16 BELLER, M.J., CHANG, L.F., and YACOBI, J.: ‘Privacy and
authentication on a portable communications systems’, IEEE J. Sel.
Areus Comrnun., 1993, 11, (6), pp. 821-829

17 AZIZ, A., and DIFFIE, W.: ‘A secure communications protocol to
prevent unauthorized access: Privacy and authentication for wireless
local area networks’, IEEE Pers. Comwzun., 1994, pp. 25-31

18 JAGGAR, D.: ‘ARM architecture and systems’, IEEE Micro, 1997,
pp. 9-1 1

19 SEGARS, S.: ‘ARM7TDMI power consumption’, IEEE Micro, 1997,
pp. 12-19

20 ARM Incorporated.: ‘Advanced RTSC machines architectural refer-
ence manual’ (Prentice-Hall, New York, 1998)

8

IEE Puoc.-Commun., Vol. 148, No. 5, October 2001 219

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 16:46 from IEEE Xplore. Restrictions apply.

