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Abstract: The results of the implementation of elliptic curve cryptography (ECC) over the field G@) 
on an 80MHz, 32-bit ARM microprocessor are presented. A practical software library has been 
produced which supports variable length implementation of the elliptic curve digital signature 
algorithm (ECDSA). The ECDSA and a recently proposed ECC-based wireless authentication 
protocol are implemented using the library. Timing results show that the 160-bit ECDSA signature 
generation and verification operations take around 46ms and 94ms, respectively. With these timings, 
the execution of the ECC-based wireless authentication protocol takes around 140ms on the 
ARM7TDMI processor, which is a widely used, low-power core processor for wireless applications. 
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1 Introduction 

The rapid progress in wireless communication systems, 
personal communication systems, and smartcard technolo- 
gies has brought new opportunities and challenges to be 
met by engineers and researchers worlung on the security 
aspects of the new communication technologies. Public-key 
cryptography offers robust solutions to many of the exist- 
ing problems in communication systems, although excessive 
computational demands (on-line memory, code size and 
speed) have made the use of public-key cryptography 
limited, particularly on wireless communication systems. 
The implementation of public-key cryptography on server 
and client platfomis rarely leads to problems, due to the 
availability of high-speed processors and extensive memory 
space. However, in restricted hardware environments with 
limited computational power and small memory, e.g. 
smartcards and cellular phones, we meet more challenges. 
The integration of the public-key cryptographic techniques 
is often delayed or completely ruled out due to the difi- 
culty of obtaining efficient, reliable solutions. It is obvious 
that we need: 

Public-key cryptographic systems with higher strength 
per key bit. 

Efficient, platform-specific, and optimised implementa- 
tions for a given restricted environment. 
The benefits of the ‘higher strength per key bit’ include 
higher speeds, lower power consumption, smaller band- 
width requirements and smaller certificate sizes. These 
advantages are particularly beneficial in applications where 
the bandwidth, computational strength, power availability, 
or storage are hghly constrained. 

Elliptic curve cryptography [l-31 offers secure and effi- 
cient solutions for the new communication technologies. It 

0 IEE, 2001 
IEE Proceedings online no. 2001051 I 
DOL 10.1049/ipm:20010511 
Paper fmt received 5th May 2000 and in revised form 10th May 2001 
The authorj are with the Electrical and Computer Engineering Department, 
Oregon State University, Owen Hall 220, Cowallis, Oregon 97331, USA 

requires fewer bits than the RSA for a s d a r  amount of 
security. For example, 1024-bit RSA seems to be equivalent 
to 139-bit ECC, since it requires approximately the same 
amount of computational power to break [4]. While the 
ECC provides shorter key sizes, the time and code size 
requirements may still be excessive. Thus, efficient and opti- 
mised implementations are required for the restricted plat- 
forms found in wireless communication. 

Certicom’s SigGen smartcard [5] is a good example of an 
ECC software implementation on a restricted platform. It 
is a prototype smartcard with an 8-bit microprocessor that 
generates digital signatures using a conventional core from 
Motorola (68SC28). Developed in cooperation with 
Schlumberger, Siggen combines the Multifiex card technol- 
ogy with the Certicom Elliptic Curve Engine based on the 
field GF(29, and provides fast public-key operations. This 
card demonstrates that effective digital signature applica- 
tions can be implemented on standard processors. The 
digital signatures are generated in less than 600ms while 
using only 90 bytes of RAM. It has been implemented in 
less than 4K code. SigGen is ideally suited for applications 
requiring end-user identification and strong authentication. 

Another interesting implementation of the ECC over the 
field G@) on a 16-bit micro-computer was introduced in 
[6]. A practical cryptographic library has been designed, 
which supports the elliptic curve arithmetic operations, the 
digital signature generation and verification, and the secure 
hash algorithm SHA-1. Their target processor was 
Mitsubishi’s 10 MHz, 16-bit microcomputer M16C, whch 
has been used in various applications in mobile telecommu- 
nication systems, e.g. cellular phones, pagers, etc. They 
designed two independent integer arithmetic modules: one 
for executing the modular arithmetic operations with 
respect to a fixed prime p ,  and the other for general integer 
routines which accept any positive integers with arbitrary 
length for wider applicability. Their goal here was to 
support not only the ECC but also the RSA. They have 
reported a speed of 150ms for generating a 160-bit ECDSA 
signature, and 630ms for verifying the signature. The total 
code size was 4 kbyte, including the SHA-1. There are 
much faster implementations of the ECC [7], although 
these implementations are obtained on high-end microproc- 
essors. 
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Our goal is to design a high-speed and scalable cqpto- 
graphic library suitable for implementation on low-power 
microprocessors and digital signal processors. The library 
supports the ECDSA signature generation and verification 
and also contains SHA and DES algorithms, which are 
necessary for the implementation of the wireless authentica- 
tion protocols. In this paper, we report the implementation 
results of the wireless authentication protocol described in 
[SI. We implemented the protocol on the SOMHz, 32-bit 
ARM7TDMI microprocessor using the ARM software 
development toolkit. The ARM7TDMI is a commonly 
used low-power processor for wireless communication plat- 
forms; for example, see [9, 101 and the web locations: 
http://www.dspg.com/prodtech/core/article/18.htm 
http://www.lucent.co"icro/NEWSPRESS 1999/ 
022399c.html 
http://www.mobilinktel.com/Press/ 
http://www.oki.co.jp/OKI/DBG/englishrm7tdmi. htm 
http://www.sirius. be/satcomintegr. htm 

In our implementation, we obtained the timings of 
46.4ms ECDSA signature generation and 92.4ms ECDSA 
signature verification for the 160-bit ECC over the field 
GF(p). We also obtained the total protocol execution tim- 
ings, memory and bandwith requirements, whch are given 
in ths  paper. 

2 Elliptic curve operations 

The speed of the elliptic curve operations, e.g. the point 
addition and point multiplication, depends on the arithme- 
tic of the underlying finite field. The drafted IEEE standard 
[l 11 proposes the use of the fields GF(p) and GF(2k). The 
use of the field GF(p) requires that we implement modular 
arithmetic with respect to the prime modulus p .  Due to the 
security requirements, the size of p is at least 100 bits, and 
usually around 160 bits. The large number arithmetic has 
been extensively studied in the context of the RSA algo- 
rithm, and eficient algorithms for field multiplication have 
been designed [15]. An efficient method for performing the 
field multiplication is the Montgomery method [13, 141, 
which effectively performs modulo 2k multiplication instead 
of modulo p multiplication, where 2k > p > 2k-I. 

In the following we summarise several different coordi- 
nate systems used to represent elliptic curve points. Th~s  is 
important because for each system the total number of field 
multiplications is different, resulting in different speed 
values for elliptic curve point additions and doublings. The 
number of expensive field operations (multiplication, squar- 
ing and inversion) required by the elliptic curve point addi- 
tion and doubling operations is summarised in Table 1 for 
each coordinate system. 

Table 1: Field operations required in each coordinate system 
~~ 

Affine 

~ 

Modified 
Jacobian 

Projective 

EC addition 1 Inv + 3 Mu1 16 Mu1 13 Mu1 + 6 Squ 

EC doubling 1 Inv + 4 Mu1 10 Mu1 4 Mu1 + 4 Squ 

2.1 Arithmetic using affine coordinates 
An elliptic curve over the finite field GF(p) is defined as the 
set of points (x, y), satisfying the elliptic curve equation 

y 2 = 5 3 + a z + b  
where x, y ,  a and b are the elements of the field. Note that 
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the condition 4a3 + 27b2 f 0 should be met. The addition 
formulae in the affine coordinates are given below. Let P = 
(XI, VI), Q = (x2, yz), and K = P + Q = (x3, y3)  be points on 
the elliptic curve E over the finite field GF(p). The formulae 
for obtaining K are given below. 

Addition formulae when P f kQ 

UI = Y I  -y2, U2 = x, - x2, U3 = U, U2-I then 
x3 = U? - x1 - x2 and y3 = U3(x, - x3) - x,. 

Doubling formulae when P = Q 
U1 = 3xI2 + a, U, = 2yl, U, = UlU2-' then 
x3 = U? - 2x1 and y3 = U3(~1 - x3) - yl. 

2.2 Arithmetic using projective coordinates ~ 

The inversion operation within the field GF(p) is a time 
consuming operation. The projective coordinates are used 
to reduce the number of modular inversions [6]. Given the 
affine coordinates x and y, the projective coordinates X, Y 
and Z are obtained as 

x = x ,  Y = y ,  z = 1  
Actually, there is more than one type of projective coordi- 
nates, although the one mentioned here provides the fastest 
arithmetic [ll]. The equations given above are used for 
converting a point from the affine coordinates to the 
projective coordinates. The formulae for converting it back 
to the affine coordinates are given as 

x = ZX-' and y = Y Z - ~  
The addition formulae in the projective coordinates are 

' given in [6, 111. Let P = (XI, Y,, Z,), Q = (X,, Y,, Z,), and 
K = P + Q = (X3, Y3, Z3) be points on the elliptic curve E 
over the field GF(p). The formulae for obtaining K are 
given below. 

Addition formulae when P # +Q 
U, = x,z;, s, = YIZ2,  U, = x2z12, s, = Y2Z,3, w = U, 
- U,, R = SI - S2, T = U, + U,, M = SI + S2, Z3 = 
Z,  Z, W then 
X3 = R2 - TW2 and Y3 = 2-'( VR - M W3), where V = TW2 

Doubling formulae when P = Q 
M = 3XI2 + aZ14, 2, = 2Y1ZI, S = 4 4  Ylz then 
X3 = M2 - 2 s  and Y3 = M(S ~ X3) - T, where T = 8 Y,'. 

2.3 Arithmetic using modified Jacobian 
coordinates 
The Jacobian coordinates of the affine coordinates (x, y )  
are defined as (X, Y, z>, such that x = XZ-, and y = YZ-3. 
The new elliptic curve equation then takes the form 

- 2x3. 

~2 = x3 + a ~ ~ 4  + a 6  

over the field GF(p). When the Jacobian coordinates are 
represented as a quadruple ( X ,  Y, Z ,  aZ4), we obtain the 
modified Jacobian coordinates which seem to provide the 
fastest possible doubling formulae. The addition formulae 
for the Jacobian and the modified Jacobian coordinates are 
given in [15]. Here, we only give the equations for the latter 
one, since it is the one that we decided to use in our soft- 
ware implementation. Let P = (XI, Yl ,  Z l ,  aZ14), Q = (X2, 
Y2! Z2, ~ 2 2 4 ) .  and K = P + Q = (X3, Y3, Z3,  aZ34) be 
points on elliptic curve E over the field G O ) .  The formu- 
lae for obtaining K are given below. 

Addition formulae when P # +Q 

Y2ZI3, H = U, -U2, Y = SI - S, then 
U, = X1Z*, s, = YlZ?, U, = X2Z12, s, = Y2Z,3, s, = 
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X3 = -H3 - 2U1 H2 + y2, Y3 = -SI H3 + r( U, H2 ~ X,), Z3 = 
Z,Z,H and Z34 = aZ14. 

Doubling formulae when P = Q 
S = 4Xl YI2, U = 8 Y14, M = 3x1~ + (uZI4), T = -2s  + M2 
then X ,  = T, Y, = M(S ~ 7 )  - U, Z3 = 2YlZl and aZ: = 
2 U(aZ,4). 

3 

The operations in the elliptic curve analogue of the digital 
signature algorithm utilise the arithmetic of points which 
are elements of the set of solutions of an elliptic curve 
equation defined over a finite field. The security of the pro- 
tocol depends on the intractability of the elliptic curve ana- 
logue of the discrete logarithm problem. First, an elliptic 
curve E defined over GFk)  with large group of order n and 
a point P of large order is selected and made public to all 
users. Then, the following key generation primitive is used 
by each party to generate the individual public and private 
key pairs. Furthermore, for each transaction the signature 
and verification primitives are used. We briefly outline the 
elliptic curve digital signature algorithm (ECDSA) below, 
details of which can be found in [l 11. 
ECDSA key generation: The user A follows these steps: 
Step 1. Select a random integer d E [2, n - 21. 
Step 2. Compute Q = d x  P. 
Step 3. The public and private keys of the user A are (E, 

P, n, Q) and d, respectively. 
ECDSA signature generation: The user A signs the message 
m using the following steps. 

Elliptic curve digital signature algorithm 

Step 1. 
Step 2. 

Step 3. 
Step 4. 

Step 5. 

Select a random integer k E [2,n - 21. 
Compute k x P = (xl, yl) and Y = x1 mod n. 
If xI E GF(2k), it is assumed that x1 is represented 
as a binary number. 
If r = 0 then go to step 1. 
Compute k-I mod n. 
Compute s = k-’(H(m) + d .  r) mod n. 
Here H i s  the secure hash algorithm SHA. 
I f s  = 0 go to Step 1. 
The signature for the message m is the pair of inte- 
gers (Y, s). 

ECDSA signature verification: The user B verifies A’s 
signature (Y, s) on the message m by applying the following 
steps: 
Step 1. Compute c = s-l mod n and H(m). 
Step 2. Compute U, = H(nz) c mod n and n2 = Y . c mod 

n. 
Step 3. Compute U ,  x P + u2 x Q = (xo, yo) and v = xo 

mod n. 
Step 4. Accept the signature if v = r. 

4 ECC-based wireless authentication protocol 

The authentication protocol given in [8] was originally 
intended for mobile phones. However, it is also suitable for 
handheld devices and smartcards. Ths  makes the protocol 
a very strong security algorithm candidate to be deployed 
in the next generation cellular phones and smartcards. The 
160-bit key length is considered secure enough for now and 
the immediate future. However, the algorithms were imple- 
mented in such a way that the key length can easily be 
increased to any integer multiple of 16 between 176 and 
256. Ths  scalability makes our implementation unique. We 
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briefly describe the protocol details of which are found in 
[8]. The protocol goals can be stated as follows: 

mutual authentication of the server and the user; 
establishing a secret authentication key to protect the 

data used in mutual authentication; 
non-repudiation of origin by the user and the server for 

relevant data sent from the user to the server and vice versa; 
agreement on a secret session key, which will be used to 

encrypt voice or data communication. 
Additional features can easily be added to the protocol. 

These include user identity confidentiality that is hiding the 
identity of the portable device from an eavesdropper on the 
communication channel, and interoperability that is allow- 
ing the negotiation of the symmetric key algorithm between 
the communicating parties. The first feature can be 
provided by sending a new encrypted temporary ID from 
the server to the user after the authentication process. The 
latter can be supported in the protocol by changing the 
exchanged message format and implementing several well- 
known encryption algorithms at both server and user 
terminals. 

4. I 
In order to receive a certificate, the terminal sends its public 
key Qs together with its user identity, through a secure and 
authenticated channel to the CA. The CA uses its private 
key to sign the hashed value of the concatenation of the 
public key, the temporary identity I,, and the certification 
expiration date ts. The CA then sends .the signed message 
through the secure and authenticated channel to the termi- 
nal as shown in Fig. 1. 

By repeating the very same process the user acquires its 
certificate as shown in Fig. 2. The certlficate consists of a 
pair of integers which is denoted as (rs, ss) for the server 
and (ru, s,) for the user. Here vu and r, are the x-coordinates 
of the (distinct) elliptic curve points R, and R,, respectively. 
As mentioned earlier, the proposed protocol is based on 
the ECDSA. 

Terminal and server initialisations 

4.2 Mutual authentication between terminal 
and server 
The protocols shown in Figs. 1 and 2 are executed off-line. 
The mutual authentication and key agreement protocols 
between the terminal (user) and the server need to be 
executed in real-time. We give the combined protocol in 
Fig. 3. The protocol steps and its resistance to several 
attacks have been elaborated in [8].  The number of 
exchanged messages of this protocol over the air is equal to 
four. It is important to minimise this number, since 
combined with the propagation delay it increases the call 
setup time. The transmission time will be the dominant 
factor for low-bit transmission channels. On the other 
hand, the bottleneck will be the encryption and decryption 
operations for high-rate transmission channels. 

The protocol consists of exchanging public keys, generat- 
ing random challenge numbers, exchanging encrypted 
certificates and the other necessary data using the special 
key, and then verifying the certificates in order to complete 
the mutual authentication process. The computational cost 
until t h s  point on the user side is just a point multiplication 
on the curve (eP operation), generating a random number, 
a secret key encryption and a secret key decryption (DES, 
3DES, RC5, or IDEA), and finally an ECC signature veri- 
fication operation. The timing figures of these operations 
will increase as we increase the ECC key length from 160 
bits. The scalability protects the long term investments: as 
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Certification authoritv Server 
Choose d, E [2, n - 21 

e Qs = d, x P 

e Send 

e Choose k,  E [2,n - 21 
Rs = k ,  x P 

e Receive 
Choose unique I, 

e r, = R,.x 
SS = k;'(H(Q,.x,I,,t,) +d, . r s )  

Send 

User Certification authority 
e Choose d, E [2, n - 21 e Choose I C ,  E [2,n - 21 

Qu = du x P o I I , = k , x P  

Send --3 Qu e Receive 
e Choose unique Iu 
ru = &.x 

Receive 

User 

Receive 
Generate a random number gu 

Send 

Qk.5: the mutuallly agreed key 
Qk =d, X Qs = (A*&)  X P 

0 c = a,-1 
O U ~ = C . ~ ,  

e u 2 = c . r s  
* R = ~ ~ x P + u : ! x Q ~ ~  

v = R.x 
e If v # r,, then abort 

km = h(Qk.5, gs, gu)msb-64 
e &: the unique secret key _ _  

Fig. 3 Mutual authenticatwn &key agreement 

Server 
.+-- e Send Qs 

the key length is increased, the hardware or the software 
need not be modified. 

The last part of the protocol establishes a session key 
between the user and the server. The one-time unique key is 
obtained by hashing several previously obtained data 
blocks. This key will be used to encrypt the data sent 
through the channel. 

There are several advantages of the protocol. While 
roaming, a visited network cannot know the session key 
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'2 Receive 
0 Q k  = d, X Qu = ( d s * & )  X P 

Qk.x: the mutuallly agreed key 
Generate a random number gs 
CO = E(Qk.x, (e,, (rs, ~s), t s ,  gu,gs>) 

CO .E- Send 

- c'1 Receive 

D ( Q k . X ,  ci) 
If gs and tu are valid, then 

o c = s ,  
e u1 = c - e u  
e u 2 = c . r u  

R = u ~  x P + u ~  x Q ,  
e v = R.x 

If v # ru, then abort 
km = h(Qk.X,gs, gu)msb-64 
k,: the unique secret key 

-1 

until a visiting user makes a request. In addition, the proto- 
col is secure unless the attacker can compromise either the 
user or the server, and at the same time break the public 
key algorithm. Furthermore, unlike many other protocols, 
certificates in this protocol are kept secret at all times to 
prevent spoofing attacks. Finally, the unique session key is 
generated by performing a one-way function on the previ- 
ously obtained data. Both parties contribute the same 
amount in generating this key. 
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The parameter lengths (for 160-256 bits implementation) 
and the bandwidth and storage requirements of the proto- 
col are summarised in Table 2. We then compare this 
protocol to the Beller-Chang-Yacobi protocol [ 161 and 
Aziz-Diffie protocol [17]. 

Comparisons with other existing protocols 

Table 2: Parameter lengths, bandwith and storage require- 
ments in bits 

160-bit 
ECC 

Q U S  161 

%,S 160 

(ru,s, sUJ 320 

tu,sr su.s 64 
Bandwidth 1730 

Storage 1408 

176-bit 
ECC 

177 

160 

352 

64 

1826 

1520 

192-bit 208-bit 
ECC ECC 

193 209 

160 160 

384 416 

64 64 

1922 . 2018 

1632 1744 

256-bit 
ECC 

257 

160 

512 

64 

2306 

2080 

The protocol requires less bandwidth. The total number 
of bits exchanged in the real-time portion of the protocols 
is given as follows: 
Beller-Chang-Yacobi: 8320 bits (1024-bit key) 
Aziz-Diffie: 8680 bits (1024-bit key) 
This protocol: 

The protocol has low storage requirements for the user 
side, which makes it suitable for smartcards and other 
handheld computing devices. Here we refer to the space 
required to store public and private keys, the certificates, or 
any extra data required throughout the protocol: 
Beller-Chang-Yacobi: 51 20 bits (1024-bit key) 
hz-Diffie: 2176 bits (1024-bit key) 
This protocol: 1408 bits (160-bit key) 

The protocol has modest computational load on the user 
side for real-time execution: 
Beller-Chang-Yacobi: 2 PKE (1024-bit) + 1 PKD (1024- 

bit) + Precomputation 
Aziz-Diffie: 3 PKE (1024-bit) + 2 PKD (1024- 

bit) 
This protocol: 1 eP (160-bit) + 1 ECDSAV (160- 

bit) + 2 SKE (672-bit data) + 1 
SHA (288-bit data) 

The meanings of the'above symbols are as follows: PKE: 
public key encryption, PKD: public key decryption, eP : 
point multiplication, ECDSAV: elliptic curve digital signa- 
ture algorithm verification, SKE: secret key encryption or 
decryption 

6 
toolkit 

1730 bits (160-bit key) 

32-bit ARM microprocessor and development 

ARM Incorporated offers several microprocessor cores, 
and the 32-bit RISC processor, ARM7TDM1, is one of 
them. It is of interest to us because the processor is opti- 
mised for the best combination of die size, performance 
and power consumption. The processor uses a three-stage 
pipeline: fetch, decode and execute [18]. A pure RISC proc- 
essor executes each instruction in a single cycle. However, 
none of the nonsuperscalar commercial RISC processors 
actually achieves this goal. The ARM7 processor takes one 
cycle to perform most data processing operations, which 
account for 50% of all instructions in a typical code. Single 
data loads take three cycles, and stores require two cycles. 
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Load and store multiples can take up to 18 cycles. Overall, 
the ARM7 achieves an average CPI (clock cycles per 
instruction) of around 1.8 [19]. The ARM7 processor has 
31 32-bit registers. At any time, 16 are visible. The other 
registers are used to speed up exception processing. All 
register specifiers in ARM instructions can address any of 
the 16 registers. 

The ARM7TDMI is a very simple RISC processor. The 
core is fully 32-bit, including a 32-bit ALU, a barrel shifter, 
data and address buses. Although the 4 Gb of address 
range is rarely used in wireless applications, it does have the 
advantage of simplifying the decode logic by using the 
upper address lines as chip select signals [20]. Certain fea- 
tures of the processor are summarised as follows. 

Shortest instruction execution time: 

Registers: 
800ns (atf= 80MHz) 

30 general purpose registers 
6 status registers 
program counter 
Instruction sets: 48 instructions 
load and store instructions 
data processing instructions 
multiply instructions 
coprocessor instructions 
branch instructions 

Portable and handheld products require processors that 
consume less power than those in desktop and other pow- 
ered applications. RISC processors such as ARM7TDMI 
have some extra strengths as far as the power is concerned. 
A modern 32-bit RISC architecture can provide software 
compatibility between a range of products. Ths  kind of 
modem microcontroller family is also very easy to imple- 
ment. These microprocessors are available as small cores 
which are easy to integrate. Another advantage is on-chip 
debug support. These advantages make this family a good 
fit for embedded applications. 

Another advantage of the ARM7TDMI is the fact that it 
has two instruction sets: The ARM7TDMI implements 
both the traditional 32-bit wide ARM instruction set and 
the new Thumb instruction set, which is only 16 bits wide. 
The Thumb instruction set was added to remove the limita- 
tions of code density and performance from narrow mem- 
ory. Effectively, the traditional 32-bit ARM instruction set 
was compressed into the Thumb 16-bit instruction set. The 
Thumb instructions are then decompressed at execution 
time to produce a traditional 32-bit wide ARM instruction, 
which is then executed on the core as normal. As the ARM 
decoding is relatively simple, it is possible to do the Thumb 
decompression on the fly without taking any additional 
cycles. The special use of ARM thumb instructions enables 
ARM to evaluate the real GSM, DECT and D-AMPS 
code from the leading wireless players. There are three 
main issues for benchmarking the code [IO]: 

Code density: This shows how much memory is required 
for a given high level C code. The smaller size will result in 
reduced cost. 

Performance: The processor's clock speed is an impor- 
tant factor. The smaller the clock rate to execute given 
algorithms, the less the power consumed. This will also lead 
to simpler designs. The 32-bit RISC controllers will spend 
most of its time in an idle mode resulting in saving power. 

Power consumption: This is one of the most important 
factors in wireless technology. The lower power consump- 
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tion will make the batteries last longer, the size smaller and 
the price cheaper. The ARM7TDMI consumes ody 
1.85mW per MHz, while the StrongARM runs up to 
233MHz but only consumes 900mW [lo]. 

ARM7TDMI is widely accepted and used in the cellular 
phone and smart phone technology due to its cost and 
power efficiencies. The future prospects show that 
ARM9TDMI will probably replace ARM7TDMI. Inte- 
grating the DSP module with the ARM7 f a d y  will 
produce the new ARM9 family [9]. 

7 Software architecture 

A practical cryptographic library implementation of the 
ECC over G F b )  was designed to perform the ECDSA sig- 
nature generation and signature verification, which is being 
standardised in the ANSI X9F1 and IEEE P1363 stand- 
ards committees. The IEEE-P1363 describes the algorithms 
in detail for elliptic point addition, doubling, multiplication, 
etc. 

In the creation of our library, we did not make any 
assumption as to the elliptic curve parameters to be used. 
Elliptic curves can be generated randomly. Note that some 
ECDSA implementations fur the constant term a of the 
curve equation to p - 3 to speed up the elliptic doubling. In 
our case, the curve parameters and the base point (P,y, P,) 
are generated randomly. Our library allows users to choose 
different curves with different key lengths, and therefore 
our library is scalable. The machine word size is 32-bit on 
the ARM microprocessor. The library is implemented in 
27kb of code size. The modified Jacobian coordinates are 
used to represent the points on the curves since this gives 
the fastest point doubling timings. 

The important features of the software library can be 
listed as follows: 

It supports digital signature generation, signature verifi- 
cation and key generation. 

It supports a superset of all standard ECC fields, basis 
representations, curves and key lengths, enabling compati- 
bility with current standards and future advances. 

It supports long key lengths providing security for high- 
value or very long-term applications. 

It provides two optional levels of curve-based precompu- 
tation that speed up repeated operations on the same curve. 
Level 1 uses a small amount of additional memory and 
provides moderate speedup and level 2 uses a large amount 
of memory and provides much more speedup. 
Short definitions of the modules are given as follows. 
Modulo p integer library: This module contains modular 
operations such as modular addition, subtraction, multipli- 
cation and inversion operations modulo p .  In the ECDSA 
signature generation operation, these routines consume the 
largest amount of time. In particular, the modular multipli- 
cation operation dominates the timing performance of an 
EC signature. To improve the performance, we use an 
improved version of the Montgomery multiplication algo- 
rithm. 
General integer library: This library contains general opera- 
tion routines. These routines accept variable length inputs. 
EC point arithmetic library: This library consists of point 
addition, point doubling and point multiplication routines. 
The point addition and doubling routines are performed 
using the modified Jacobian coordinate system. 
ECDSA key and signature generatiodverification: Ths  is 
the root module of our software architecture. The elliptic 
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curve parameters and key generation are performed here. 
Upon creating these parameters, this top module can inter- 
act with other modules to generate signatures or to verify 
signatures. Note that our library does not contain a digest 
algorithm such as SHA-1 or MD5. We use randomly gen- 
erated 160-bit message values, which is assumed to be the 
output of a hash function algorithm, to test the modules. 

8 Implementation results 

In this Section, we present our implementation results. The 
elliptic curve signature generation and verification timings 
are listed for variable key lengths to give an idea of how 
fast these operations could be done in today's technology. 
Table 3 shows the timings of the operations for variable 
ECC key lengths. 

Table 3: Performance timings 

DES 

SHA 

Point Mu1 

Sign Gen 

Sign Ver 

Protocol 

160-bit 176-bit 192-bit 208-bit 256-bit 
ECC, ms ECC, ms ECC, ms ECC, ms ECC, ms 

0.25 0.25 0.25 0.25 0.25 

2 2 2 2 2 

44.8 63.4 69.2 93.6 150.2 

46.4 65.4 71.3 96.2 153.5 

92.4 131.3 148.3 194.3 313.4 

139.7 197.2 220 290.4 466.1 

Note that our library does not have a random number 
generator (RNG). Generating a random number is very 
fast and therefore its timing value is negligible compared to 
the other operations such as point multiplication and signa- 
ture generation. Similarly, SHA operations can be executed 
very fast. According to the implementation in [6], the 
SHA-1 requires approximately 2 ms to digest one block 
(512 bits) of data. It is a hardware implementation on a 16- 
bit Mitsubishi microprocessor (M16C). In our protocol the 
input size to the SHA-1 is given as k + 128, where k is the 
implemented elliptic curve key length. The largest k value 
shown in the table is 256 bits for which the input size for 
SHA-1 is 384-bits. Therefore, for each key length given in 
the Table 3, the SHA-I input length in our protocol should 
be padded to reach 512-bit block size. We assume that in 
the worst case scenario we will obtain 2ms timing value for 
processing a block of data using SHA- 1. 

The protocol's timings on signature generation and veri- 
fication is better than that of [6]. Hasegawa, Nakajima and 
Matsui reported signature generation and verification 
timings as 150ms and 630ms on a 16-bit microcomputer, 
respectively, in our implementation, the signature genera- 
tion and verification timings are 46ms and 92ms on a 32- 
bit ARM microprocessor. 

9 Possible enhancements 

Possible enhancements for further speeding up and/or 
reducing code size are: (i) the scalar multiplication of the 
base point can be performed in a more efficient way by 
having a precomputed look-up table in the ROM area; (ii) 
the fmite field multiplication operations dominate the per- 
formance of signature generation and verification. Even a 
small improvements on the existing multiplication routine 
improves the overall ECDSA performance; and (iii) the 16- 
bit wide Thumb instruction set of ARM7TDMI can be 
used to reduce the code size. 
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10 Conclusions 

In this paper, we presented a practical implementation of 
the ECC over the field GF(p). The field and elliptic curve 
operation algorithms in the library were written in such a 
way that the implemented design will permit the use of 
increased key lengths. Recently, it was claimed [4] that 
1024-bit RSA and 139-bit ECC offer computationally 
equivalent security. This is better than the generally 
believed security comparison, in which 1024-bit RSA and 
160-bit ECC offer similar security. 

In our implementation we created an ECC library that is 
capable of performing the ECDSA signature generation 
and verification operations. More importantly, the imple- 
mentation permits users to select different elliptic curves 
with longer key sizes. This scalable architecture of the 
design enables the ECC to be used in restricted platforms 
as well as high-end servers. With this implementation, we 
obtained timing results of 46ms and 92ms for the ECC-160 
signature generation and verification on a 32-bit ARM 
processor, respectively. In addition, the timing results were 
obtained for a recently proposed wireless authentication 
and key agreement protocol [8]. This protocol can be used 
in third generation wireless communication as a security 
protocol due to its bandwidth and storage eficiency and 
fast execution timing performance. The protocol execution 
timing is 140ms on a ARM7TDMI processor. 
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